35 research outputs found

    Emerging Technologies and Research Challenges for 5G Wireless Networks

    Get PDF
    As the take-up of Long Term Evolution (LTE)/4G cellular accelerates, there is increasing interest in technologies that will define the next generation (5G) telecommunication standard. This paper identifies several emerging technologies which will change and define the future generations of telecommunication standards. Some of these technologies are already making their way into standards such as 3GPP LTE, while others are still in development. Additionally, we will look at some of the research problems that these new technologies pose.Comment: Accepted for publication in IEEE Wireless Communications April 201

    Temporal connectivity in finite networks with non-uniform measures

    Get PDF
    Soft Random Geometric Graphs (SRGGs) have been widely applied to various models including those of wireless sensor, communication, social and neural networks. SRGGs are constructed by randomly placing nodes in some space and making pairwise links probabilistically using a connection function that is system specific and usually decays with distance. In this paper we focus on the application of SRGGs to wireless communication networks where information is relayed in a multi hop fashion, although the analysis is more general and can be applied elsewhere by using different distributions of nodes and/or connection functions. We adopt a general non-uniform density which can model the stationary distribution of different mobility models, with the interesting case being when the density goes to zero along the boundaries. The global connectivity properties of these non-uniform networks are likely to be determined by highly isolated nodes, where isolation can be caused by the spatial distribution or the local geometry (boundaries). We extend the analysis to temporal-spatial networks where we fix the underlying non-uniform distribution of points and the dynamics are caused by the temporal variations in the link set, and explore the probability a node near the corner is isolated at time TT. This work allows for insight into how non-uniformity (caused by mobility) and boundaries impact the connectivity features of temporal-spatial networks. We provide a simple method for approximating these probabilities for a range of different connection functions and verify them against simulations. Boundary nodes are numerically shown to dominate the connectivity properties of these finite networks with non-uniform measure.Comment: 13 Pages - 4 figure

    MIMO Channel Dimension Estimation in Interference Channels with Antenna Disparity

    Get PDF

    Emerging Technologies and Initiatives in R&D on 5G Networks

    Get PDF

    Increasing the Secrecy Gap in Quasi-Static Rayleigh Channels with Secret Splitting

    Get PDF

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial
    corecore